Partial Label Learning via Label Enhancement

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Label Learning with Label Enhancement

Multi-label learning deals with training instances associated with multiple labels. Many common multi-label algorithms are to treat each label in a crisp manner, being either relevant or irrelevant to an instance, and such label can be called logical label. In contrast, we assume that there is a vector of numerical label behind each multi-label instance, and the numerical label can be treated a...

متن کامل

Class Label Enhancement via Related Instances

Class-instance label propagation algorithms have been successfully used to fuse information from multiple sources in order to enrich a set of unlabeled instances with class labels. Yet, nobody has explored the relationships between the instances themselves to enhance an initial set of class-instance pairs. We propose two graph-theoretic methods (centrality and regularization), which start with ...

متن کامل

Confidence-Rated Discriminative Partial Label Learning

Partial label learning aims to induce a multi-class classifier from training examples where each of them is associated with a set of candidate labels, among which only one label is valid. The common discriminative solution to learn from partial label examples assumes one parametric model for each class label, whose predictions are aggregated to optimize specific objectives such as likelihood or...

متن کامل

Transductive Multi-Label Learning via Alpha Matting

Multi-label learning deals with the problems when each instance can be assigned to multiple classes simultaneously, which are ubiquitous in real-world learning tasks. In this paper, we propose a new multilabel learning method, which is able to exploit unlabeled data to obtain an effective model for assigning appropriate multiple labels to instances. The proposed method is called T (TRansduct...

متن کامل

Discriminative Learning for Label Sequences via Boosting

This paper investigates a boosting approach to discriminative learning of label sequences based on a sequence rank loss function. The proposed method combines many of the advantages of boosting schemes with the efficiency of dynamic programming methods and is attractive both, conceptually and computationally. In addition, we also discuss alternative approaches based on the Hamming loss for labe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33015557